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Figure 6.4.1 Deformation response of SDF systems to El Centro ground motion.
fs(t) = ku(t) (6.4.1)
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Figure 6.4.1 Deformation response of SDF systems to El Centro ground motion.
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(a) Ground acceleration; (b) deformation response of three SDF systems with ¢ = 2%
and 7, = 0.5, 1, and 2 sec; (c) deformation response spectrum for ¢ = 2%.

later, the complete response spectrum includes such spectrum curves for several values of

damping.

6.6.2 Pseudo-velocity Response Spectrum

Consider a quantity V for an SDF system with natural frequency w, related to its peak
deformation D = u, due to earthquake ground motion:

(6.6.1)

The quantity V has units of velocity. It is related to the peak value of strain energy El,
stored in the system during the earthquake by the equation

ESa=_

> (6.6.2)
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Figure 6.6.2 Response spectra (¢ = 0.02) for El Centro ground motion: (a) deforma-
tion response spectrum; (b) pseudo-velocity response spectum; (c) pseudo-acceleration
response spectrum.




6.6.4 Combined D-V-A Spectrum

Each of the deformation, pseudo-velocity, and pseudo-acceleration response spectra for a
given ground motion contains the same information, no more and no less. The three spec-
tra are simply different ways of presenting the same information on structural response.
Knowing one of the spectra, the other two can be obtained by algebraic operations using
Egs. (6.6.1) and (6.6.3).

Why do we need three spectra when each of them contains the same information?
One of the reasons is that each spectrum directly provides a physically meaningful quan-
tity. The deformation spectrum provides the peak deformation of a system. The pseudo-
velocity spectrum is related directly to the peak strain energy stored in the system during
the earthquake; see Eq. (6.6.2). The pseudo-acceleration spectrum is related directly to the
peak value of the equivalent static force and base shear; see Eq. (6.6.4). The second reason
lies in the fact that the shape of the spectrum can be approximated more readily for design
purposes with the aid of all three spectral quantities rather than any one of them alone; see
Sections 6.8 and 6.9. For this purpose a combined plot showing all three of the spectral
quantities is especially useful. This type of plot was developed for earthquake response
spectra, apparently for the first time, by A. S. Veletsos and N. M. Newmark in 1960.
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Figure 6.6.3 Combined D- V/-A response spectrum for El Centro ground motion; { = 2%.
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This integrated presentation is possible because the three spectral quantities are in-
terrelated by Egs. (6.6.1) and (6.6.3), rewritten as

A T, 2
L V=w,D oo 2a=v=""p (6.6.6)
Wy 27 T,

Observe the similarity between these equations relating D, V, and A and Eq. (3.2.21) for
the dynamic response factors ¥y, K,, and R, for an SDF system subjected to harmonic
excitation. Equation (3.2.21) permitted presentation of Xy, K,, and £,, all together, on
four-way logarithmic paper (Fig. 3.2.8), constructed by the procedure described in Ap-
pendix 3 (Chapter 3). Similarly, the graph paper shown in Fig. A6.1 (Appendix 6) with
four-way logarithmic scales can be constructed to display D, V, and A, all together. The
vertical and horizontal scales for ' and 7, are standard logarithmic scales. The two scales
for D and A sloping at +45° and —45°, respectively, to the 7;-axis are also logarithmic
scales but not identical to the vertical scale; see Appendix 3.

Once this graph paper has been constructed, the three response spectra—deforma-
tion, pseudo-velocity, and pseudo-acceleration—of Fig. 6.6.2 can readily be combined into
a single plot. The pairs of numerical data for V and 7}, that were plotted in Fig. 6.6.2b on
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Figure 6.6.4 Combined D- V- Aresponse spectrum for El Centro ground motion; ¢ = 0,
2, 5, 10, and 20%.
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linear scales are replotted in Fig. 6.6.3 on logarithmic scales. For a given natural period 7,
the D and A values can be read from the diagonal scales. As an example, for 7;, = 2 sec,
Fig. 6.6.3 gives D = 7.47 in. and A = 0.191g. (Actually, these numbers cannot be read so
accurately from the graph; in this case they were available from Fig. 6.6.2.) The four-way
plot is a compact presentation of the three—deformation, pseudo-velocity, and pseudo-
acceleration—response spectra, for a single plot of this form replaces the three plots of
Fig. 6.6.2.

A response spectrum should cover a wide range of natural vibration periods and sev-
eral damping values so that it provides the peak response of all possible structures. The
period range in Fig. 6.6.3 should be extended because tall buildings and long-span bridges,
among other structures, may have longer vibration periods (Fig. 2.1.2), and several damp-
ing values should be included to cover the practical range of ¢ = 0 to 20%. Figure 6.6.4
shows spectrum curves for ¢ = 0, 2, 5, 10, and 20% over the period range 0.02 to 50 sec.
This, then, is the response spectrum for the north-south component of ground motion
recorded at one location during the Imperial Valley earthquake of May 18, 1940. Because
the lateral force or base shear for an SDF system is related through Eq. (6.6.5) to A/g, we
also plot this normalized pseudo-acceleration spectrum in Fig. 6.6.5. Similarly, because
the peak deformation is given by D, we also plot this deformation response spectrum
in Fig. 6.6.6.

The response spectrum has proven so useful in earthquake engineering that spec-
tra for virtually all ground motions strong enough to be of engineering interest are now

4 T T T T T T T T T T T

Alg

fso/w

T, sec

Figure 6.6.5 Normalized pseudo-acceleration, or base shear coefficient, response spec-
trum for El Centro ground motion; ¢ = 0, 2, 5, 10, and 20%.




6.6.5 Construction of Response Spectrum

The response spectrum for a given ground motion component iig(f) can be developed by
implementation of the following steps:

1. Numerically define the ground acceleration ii,(#); typically, the ground motion ordi-
nates are defined every 0.02 sec.

2. Select the natural vibration period 7;, and damping ratio ¢ of an SDF system.

3. Compute the deformation response u(¢) of this SDF system due to the ground mo-
tion ii(t) by any of the numerical methods described in Chapter 5. [In obtaining the
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Figure 6.6.6 Deformation response spectrum for El Centro ground motion; ¢ = 0, 2, 5, 10, and
20%.
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by examples. We emphasize again that no further dynamic analysis is required beyond
that necessary to determine u(f). In particular, the peak values of shear and overturning
moment at the base of the one-story structure are

Voo = kD = mA Mpo = hVp, (6.7.3)

We note that any one of these response spectra—deformation, pseudo-velocity, or
pseudo-acceleration—is sufficient for computing the peak deformations and forces re-
quired in structural design. For such applications the velocity or acceleration spectra
(defined in Section 6.5) are not required, but for completeness we discuss these spectra
briefly at the end of this chapter.

Example 6.2

A 12-ft-long vertical cantilever, a 4-in.-nominal-diameter standard steel pipe, supports a
5200-1b weight attached at the tip as shown in Fig. E6.2. The properties of the pipe are:
outside diameter, d, = 4.500 in., inside diameter d; = 4.026 in., thickness t = 0.237 in.,
and second moment of cross-sectional area, 7 = 7.23 in?, elastic modulus £ = 29,000 ksi,
and weight = 10.79 Ib/foot length. Determine the peak deformation and bending stress in the
cantilever due to the El Centro ground motion. Assume that ¢ = 2%.

Solution The lateral stiffness of this SDF system is

3EI _ 3(29 x 10%)7.23
I3 (12x12)8

The total weight of the pipe is 10.79 x 12 = 129.5 b, which may be neglected relative to the
lumped weight of 5200 1b. Thus

2
= ';’ - ZT(? = 0.01347 kip-sec? /in.

The natural vibration frequency and period of the system are

| k [ 0.211
wp = o= 001347 = 3.958 rad/sec T, = 1.59 sec

From the response spectrum curve for ¢ = 2% (Fig. E6.2b), for 7, = 1.59 sec, D = 5.0 in.
and A = 0.20g. The peak deformation is

k=

= 0.211 kip/in.

U, = D =5.0in.

The peak value of the equivalent static force is
A
fsp = Ew = 0.20 x 5.2 = 1.04 kips

The bending moment diagram is shown in Fig. E6.2d with the maximum moment at the base
= 12.48 kip-ft. Points A and B shown in Fig. E6.2e are the locations of maximum bending

stress:

_ Mc (1248 x 12)45/2) .
omax = T = 723 = 463 ksl
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fso=1.04 kips
+ @ 5200 1b _L’Q

12

v v A @ B
all ‘¢ |\ 12.48 kip-ft

(a) (c) (d) Moment (e) Section a-a

N 4-in. pipe

100

50

20

10

V, in./sec

(b)

Figure EG.2

Thus, o0 = +46.5 ksi at A and 0 = —46.5 ksi at B, where + denotes tension. The algebraic
signs of these stresses are irrelevant because the direction of the peak force is not known, as
the pseudo-acceleration spectrum is, by definition, positive.

Example 6.3

The stress computed in Example 6.2 exceeded the allowable stress and the designer decided
to increase the size of the pipe to an 8-in.-nominal standard steel pipe. Its properties are
d, = 8.625 in., d; = 7.981 in., t = 0.322 in., and 7 = 72.5 in*. Comment on the advantages
and disadvantages of using the larger pipe.
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Solution .
3(29 x 10°)72.5
p= 2B XTOVTED g 112 kips/in.
(12 x 12)3
[ 2.112
= = 12.52 T, =0.502
Wn 0.01347 52 rad/sec n = 0.502 sec
From the response spectrum (Fig. E6.2b): D = 2.7 in. and A = 1.1g. Therefore,
u,=D=2.7in.
fso =1.1 x 5.2 = 5.72 kips
%ase = 5.72 X 12 = 68.64 kip‘ft
(68.64 x 12)(8.625/2) .
Using the 8-in.-diameter pipe decreases the deformation from 5.0 in. to 2.7 in. However,
contrary to the designer’s objective, the bending stress increases slightly.

This example points out an important difference between the response of structures to
earthquake excitation and to a fixed value of static force. In the latter case, the stress would
decrease, obviously, by increasing the member size. In the case of earthquake excitation,
the increase in pipe diameter shortens the natural vibration period from 1.59 sec to 0.50 sec,
which for this response spectrum has the effect of increasing the equivalent static force fs,.
Whether the bending stress decreases or increases by increasing the pipe diameter depends on
the increase in section modulus, //c, and the increase or decrease in fs,, depending on the
response spectrum.

Example 6.4

10 kips fso = 7.6 kips -

A small one-story reinforced-concrete building is idealized for purposes of structural analysis
as a massless frame supporting a total dead load of 10 kips at the beam level (Fig. E6.4a).
The frame is 24 ft wide and 12 ft high. Each column and the beam has a 10-in.-square cross
section. Assume that the Young’s modulus of concrete is 3 x 103 ksi and the damping ratio for
the building is estimated as 5%. Determine the peak response of this frame to the El Centro
ground motion. In particular, determine the peak lateral deformation at the beam level and
plot the diagram of bending moments at the instant of peak response.

17.1 kip-ft

17.1

@ - 17.1
10” sq.
q \\) N 17.1

10”7 sq. ( 2 ( 2

24 |

'

(a) (b) ©

Figure E6.4 (a) Frame; (b) equivalent static force; (c) bending moment diagram.
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Solution The lateral stiffness of such a frame was calculated in Chapter 1: k = 96 EI/7h,
where ET is the flexural rigidity of the beam and columns and £ is the height of the frame.
For this particular frame,

3 4
j= BB X1YA0/12) _ 11 4g kips/in.

7(12 x 12)3
The natural vibration period is
27 10/386
T, = =2 =0.
"= i s O g - o0see

For T, = 0.3 and ¢ = 0.05, we read from the response spectrum of Fig. 6.6.4: D = 0.67 in.
and A = 0.76g. Peak deformation: u, = D = 0.67 in. Equivalent static force: fg, =
(A/g)w = 0.76 x 10 = 7.6 kips. Static analysis of the frame for this lateral force, shown in
Fig. E6.4b, gives the bending moments that are plotted in Fig. E6.4c.

Example 6.5

The frame of Example 6.4 is modified for use in a building to be located on sloping ground
(Fig. E6.5). The beam is now made much stiffer than the columns and can be assumed to be
rigid. The cross sections of the two columns are 10 in. square, as before, but their lengths are
12 ft and 24 ft, respectively. Determine the base shears in the two columns at the instant of
peak response due to the El Centro ground motion. Assume the damping ratio to be 5%.

Solution
1. Compute the natural vibration period.

123 x 10%)(101/12)  12(3 x 10%)(10%/12)

k
(12 x 12)3 (24 x 12)3
= 10.05 + 1.26 = 11.31 kips/in.
10/386
1, =27 1131 = 0.30 sec

2. Compute the shear force at the base of the short and long columns.
u, =D =0.67in., A =0.76g
Vshort = Kshortlo = (10.05)0.67 = 6.73 kips
Viong = honglo = (1.26)0.67 = 0.84 kip

12/
24

24

-
¢

Figure E6.5
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Observe that both columns go through equal deformation. Undergoing equal deformations, the
stiffer column carries a greater force than the flexible column; the lateral force is distributed
to the elements in proportion to their relative stiffnesses. Sometimes this basic principle has,
inadvertently, not been recognized in building design, leading to unanticipated damage of the
stiffer elements.

Example 6.6

For the three-span box-girder bridge of Example 1.3, determine the base shear in each of
the six columns of the two bents due to El Centro ground motion applied in the longitudinal
direction. Assume the damping ratio to be 5%.

Solution The weight of the bridge deck was computed in Example 1.3: w = 6919 kips. The
natural period of longitudinal vibration of the bridge was computed in Example 2.2: T, =
0.573 sec. For T, = 0.573 secand ¢ = 0.05, we read from the response spectrum of Fig. 6.6.4:
D =2.591in. and A = 0.807g.

All the columns have the same stiffness and they go through equal deformation u, =
D = 2.591 in. Thus, the base shear will be the same in all columns, which can be computed
in one of two ways: The total equivalent static force on the bridge is [from Eq. (6.6.5)]

fs0 = 0.807 x 6919 = 5584 kips

Base shear for one column, V5 = 5584 + 6 = 931 kips. Alternatively, the base shear in each
column is

2.591

Vp = keortlp = 4313 x = 931 kips

6.8 RESPONSE SPECTRUM CHARACTERISTICS

We now study the important properties of earthquake response spectra. Figure 6.8.1 shows
the response spectrum for El Centro ground motion together with irg,, 15, and ug,, the
peak values of ground acceleration, ground velocity, and ground displacement, respec-
tively, identified in Fig. 6.1.4. To show more directly the relationship between the response
spectrum and the ground motion parameters, the data of Fig. 6.8.1 have been presented
again in Fig. 6.8.2 using normalized scales: D/ug,, V/ilg,, and A/iig,. Figure 6.8.3 shows
one of the spectrum curves of Fig. 6.8.2, the one for 5% damping, together with an ideal-
ized version shown in dashed lines; the latter will provide a basis for constructing smooth
design spectra directly from the peak ground motion parameters (see Section 6.9). Based
on Figs. 6.8.1 to 6.8.3, we first study the properties of the response spectrum over various
ranges of the natural vibration period of the system separated by the period values at a, b,
¢, deand f: T,=0.035sec, T, =0.125, T, = 0.5, T; = 3.0, T, = 10, and T; = 15 sec.
Subsequently, we identify the effects of damping on spectrum ordinates.

For systems with very short period, say 7, < T, = 0.035sec, the peak pseudo-
acceleration A approaches iiz, and D is very small. This trend can be understood based on
physical reasoning. For a fixed mass, a very short-period system is extremely stiff or es-
sentially rigid. Such a system would be expected to undergo very little deformation and its
mass would move rigidly with the ground; its peak acceleration should be approximately
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Figure 6.8.5 (a) El Centro ground displacement; (b) deformation response of SDF sys-
tem with 7, = 30 sec and ¢ = 2%; (c) very flexible system.
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Figure 6.8.6 Fault-normal component of ground motions recorded at (a) Rinaldi Receiv-
ing Station, 1994 Northridge earthquake, and (b) Taft, 1952 Kern County earthquake.
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Figure 6.8.2 Response spectrum for El Centro ground motion plotted with normalized
scales Aliigo, Vitgo, and D/ugo; ¢ =0, 2, 5, and 10%.

For short-period systems with 7;, between 7, = 0.035 sec and 7. = 0.50 sec, A
exceeds ilg,, with the amplification depending on T, and ¢. Over a portion of this period
range, T, = 0.125 sec to 7. = 0.5 sec, A may be idealized as constant at a value equal to
iigo amplified by a factor depending on ¢.

For long-period systems with 7, between 7; = 3 sec and Ty = 15 sec, D generally
exceeds ug,, with the amplification depending on 7;, and ¢. Over a portion of this period
range, Ty = 3.0 sec to T, = 10 sec, D may be idealized as constant at a value equal to ug,
amplified by a factor depending on ¢.

For intermediate-period systems with 7;, between 7. = 0.5 sec and 7; = 3.0 sec, V
exceeds i15,. Over this period range, V may be idealized as constant at a value equal to
i1go, amplified by a factor depending on ¢.

Based on these observations, it is logical to divide the spectrum into three period
ranges (Fig. 6.8.3). The long-period region to the right of point d, 7, > Ty, is called
the displacement-sensitive region because structural response is related most directly to
ground displacement. The short-period region to the left of point ¢, 7, < T, is called the
acceleration-sensitive region because structural response is most directly related to ground
acceleration. The intermediate period region between points cand d, 7. < T, < Tg, is
called the velocity-sensitive region because structural response appears to be better related
to ground velocity than to other ground motion parameters. For a particular ground motion,
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Figure 6.8.3 Response spectrum for El Centro ground motion shown by a solid line
together with an idealized version shown by a dashed line; ¢ = 5%.

the periods 7}, T}, T, and 77 on the idealized spectrum are independent of damping, but
T and Ty vary with damping.

The preceding observations and discussion have brought out the usefulness of the
four-way logarithmic plot of the combined deformation, pseudo-velocity, and pseudo-
acceleration response spectra. These observations would be difficult to glean from the
three individual spectra.

Idealizing the spectrum by a series of straight lines a-b-c-d-e- f in the four-way
logarithmic plot is obviously not a precise process. For a given ground motion, the period
values associated with the points a, b, c, d, e, and f and the amplification factors for the
segments b-c, c-d, and d-e are somewhat judgmental in the way we have approached
them. However, formal curve-fitting techniques can be used to replace the actual spec-
trum by an idealized spectrum of a selected shape. In any case, the idealized spectrum in
Fig. 6.8.3 is not a close approximation to the actual spectrum. This may not be visually
apparent but becomes obvious when we note that the scales are logarithmic. As we shall
see in the next section, the greatest benefit of the idealized spectrum is in constructing a
design spectrum representative of many ground motions.
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Figure 6.8.4 (a) El Centro ground acceleration; (b) total acceleration response of an SDF
system with 7, = 0.02 sec and { = 2%; (c) pseudo-acceleration response of the same
system; (d) rigid system.

The periods T, Tp, T, Ty, I., and Ty separating spectral regions and the ampli-
fication factors for the segments b—c, c—d, and d—e depend on the time variation of
ground motion, in particular, the relative values of peak ground acceleration, velocity, and
displacement, as indicated by their ratios: i,,/ilg, and ugy/ilg. These ground motion
characteristics depend on the earthquake magnitude, fault-to-site distance, source-to-site
geology, and soil conditions at the site.

Ground motions recorded within the near-fault region of an earthquake at stations
located toward the direction of the fault rupture are qualitatively quite different from the
usual far-fault earthquake ground motions. The fault-normal component of a ground mo-
tion recorded in the near-fault region of the Northridge, California, earthquake of January
17, 1994 displays a long-period pulse in the acceleration history that appears as a coherent
pulse in the velocity and displacements histories (Fig. 6.8.6a). Such a pronounced pulse
does not exist in ground motions recorded at locations away from the near-fault region,
such as the Taft record obtained from the Kern County, California, earthquake of July 21,
1952 (Fig. 6.8.6b).

The ratios i1g,/ily, and ug,/ i1, are very different between the fault normal compo-
nents of near- and far-fault motions. As apparent from the peak values noted in Fig. 6.8.6,
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Figure 6.8.5 (a) El Centro ground displacement; (b) deformation response of SDF sys-
tem with 7, = 30 sec and ¢ = 2%; (c) very flexible system.
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Figure 6.8.6 Fault-normal component of ground motions recorded at (a) Rinaldi Receiv-
ing Station, 1994 Northridge earthquake, and (b) Taft, 1952 Kern County earthquake.
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